cykooz.resizer
is package with the optimized version of image resizing
based on Rust's crate fast_image_resize.
python3 -m pip install cykooz.resizer
Or with automatically installing Pillow:
python3 -m pip install cykooz.resizer[pillow]
Supported pixel types and available optimisations:
Format | Description | SSE4.1 | AVX2 | Neon |
---|---|---|---|---|
U8 | One u8 component per pixel (e.g. L) |
+ | + | + |
U8x2 | Two u8 components per pixel (e.g. LA) |
+ | + | + |
U8x3 | Three u8 components per pixel (e.g. RGB) |
+ | + | + |
U8x4 | Four u8 components per pixel (e.g. RGBA, RGBx, CMYK) |
+ | + | + |
U16 | One u16 components per pixel (e.g. L16) |
+ | + | + |
U16x2 | Two u16 components per pixel (e.g. LA16) |
+ | + | + |
U16x3 | Three u16 components per pixel (e.g. RGB16) |
+ | + | + |
U16x4 | Four u16 components per pixel (e.g. RGBA16, RGBx16, CMYK16) |
+ | + | + |
I32 | One i32 component per pixel |
- | - | - |
F32 | One f32 component per pixel |
+ | + | - |
F32x2 | Two f32 components per pixel (e.g. LA32F) |
+ | + | - |
F32x3 | Three f32 components per pixel (e.g. RGB32F) |
+ | + | - |
F32x4 | Four f32 components per pixel (e.g. RGBA32F) |
+ | + | - |
Implemented resize algorithms:
- Nearest - is nearest-neighbor interpolation, replacing every pixel with the nearest pixel in the output; for upscaling this means multiple pixels of the same color will be present.
- Convolution with different filters:
- box
- bilinear
- catmull_rom
- mitchell
- gaussian
- lanczos3
- Super sampling - is resizing an image in two steps. The first step uses the "nearest" algorithm. The second step uses "convolution" with configurable filter.
from PIL import Image
from cykooz.resizer import FilterType, ResizeAlg, Resizer, ResizeOptions
resizer = Resizer()
dst_size = (255, 170)
dst_image = Image.new('RGBA', dst_size)
for i in range(1, 10):
image = Image.open('nasa_%d-4928x3279.png' % i)
resizer.resize_pil(image, dst_image)
dst_image.save('nasa_%d-255x170.png' % i)
# Resize using a bilinear filter and ignoring an alpha channel.
image = Image.open('nasa-4928x3279.png')
resizer.resize_pil(
image,
dst_image,
ResizeOptions(
resize_alg=ResizeAlg.convolution(FilterType.bilinear),
use_alpha=False,
)
)
from cykooz.resizer import ImageData, PixelType, Resizer
def resize_raw(width: int, height: int, pixels: bytes):
src_image = ImageData(
width,
height,
PixelType.U8x4,
pixels,
)
resizer = Resizer()
dst_image = ImageData(255, 170, PixelType.U8x4)
# By default, Resizer multiplies and divides by alpha channel
# images with `U8x2`, `U8x4`, `U16x2` and `U16x4` pixels.
resizer.resize(src_image, dst_image)
return dst_image
from cykooz.resizer import Resizer, CpuExtensions
resizer = Resizer()
resizer.cpu_extensions = CpuExtensions.sse4_1
...
from cykooz.resizer import Resizer, ResizeOptions, ResizerThreadPool
...
thread_pool = ResizerThreadPool(num_threads=6)
resizer = Resizer()
resizer.resize(
src_image,
dst_image,
ResizeOptions(thread_pool=thread_pool),
)
...
Environment:
- CPU: AMD Ryzen 9 5950X
- RAM: DDR4 4000 MHz
- Ubuntu 24.04 (linux 6.8.0)
- Python 3.12
- Rust 1.83.0
- cykooz.resizer = "3.1" (single-threaded mode)
Other Python libraries used to compare of resizing speed:
- Pillow = "11.0.0" (https://pypi.org/project/Pillow/)
Resize algorithms:
- Nearest
- Convolution with Bilinear filter
- Convolution with Lanczos3 filter
- Source image nasa-4928x3279.png
Package (time in ms) | nearest | bilinear | lanczos3 |
---|---|---|---|
Pillow | 0.89 | 107.21 | 203.67 |
cykooz.resizer | 0.20 | 26.09 | 50.47 |
cykooz.resizer - sse4_1 | 0.20 | 12.12 | 24.91 |
cykooz.resizer - avx2 | 0.20 | 8.53 | 22.10 |
- Source image nasa-4928x3279.png has converted into grayscale image with one byte per pixel.
Package (time in ms) | nearest | bilinear | lanczos3 |
---|---|---|---|
Pillow | 0.23 | 21.41 | 51.15 |
cykooz.resizer | 0.17 | 5.30 | 12.17 |
cykooz.resizer - sse4_1 | 0.17 | 2.11 | 5.84 |
cykooz.resizer - avx2 | 0.17 | 1.86 | 4.58 |